
| AD-A286 989

I
I
I

19990311027

I

OPTIMAL COMPENSATOR DESIGN
UIN QUANTITATIVE FEEDBACK THEORYII

(A report on Special Contract SPC-95-4032

submitted to the European Office of Aerospace Research and Development)

i J N Ridley & A.L. Stevens

I University of the Witwatersrand, Johannesburg

I
I

U -=- --

I

i 99-00027
i IIIIIIII III II INN lIi _ +64 \>-0

I
SI ,q K99q qO4 -oW$3



I
U

OPTIMAL COMPENSATOR DESIGN
•I IN QUANTITATIVE FEEDBACK THEORY
I

(A report on Special Contract SPC-95-40323 submitted to the European Office of Aerospace Research ,nd Development)

I J N Ridley & A.L. Stevens

1 1. INTRODUCTION

The Quantitative Feedback Theory (QFT) technique developed by Isaac Horowitz over a

number of years, is perhaps the only controller design methodology that enables a controller to

be designed to a given specification in a transparent quantitative manner. By this is meant that3 there is a definite quantitative measure of the closeness of the design to an optimum. A major

advantage of QFT is the fact that the trade-offs between the constraints and the set of design

criteria are visible to the designer in a transparent manner at all stages during the actual design/.

process, rather than at the end, as is the case with 'black box' synthesis techniques such as H' 44"

or LQG optimal control.

The manual QFT method introduced by Horowitz and others in 1972'\4r- represented

a major breakthrough in the quantitative design of robust controllers. However, the method

is extremely labour intensive and the final loop-shaping stage of the design process requires

substantial practice and expertise and it is believed that for this reason, the method has not

been as widely accepted as it deserves to be.

* This report details research carried out to develop a computer-based method for optimal

)Jlog2pshaping in QFT. Although some work has already been done in this area by Gera and

HorowiG4tz' n 1980, no practical implementation details have been published. We believe that

in OptComp we have made good progress in developing a program that enables the engineer to

use QFT methods to design a compensator (or controller) iteratively to any d sr*d rder, while
I remaining transparent at all times about what trade-offs are necessary.

At each stage, the designer chooses the desired form of compensator, and the points in

the Nichols chart through which it should pass. The program fits the best curve, and clearly
displays the difference between the accuracy required and the accuracy attained, both graphically

and in tabular form. The designer can then use his or her own judgement to decide whether

a satisfactory result has been reached for a compensator of this order, and, if so, whether

a compensator of higher order should be attempted. Thus, while all the drudgery has been3 removed from the design process, the designer still has the satisfaction of being closely involved

in the art of design (for example, finding troughs in the boundaries) and in assessing trade-

offs between accuracy at different w-values, or between overall accuracy and the order of the

controller. This means that the benefits of QFT retained, and its drawbacks removed.
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2. OBJECTIVES AND CONTRACTUAL DETAILS

In terms of the original letter of 5 May 1996, the contract was in two parts:

a. To develop computer algorithms to enable computer-aided design of the optimum loop

transmission for QFT design of multivariable control systems.

b. To incorporate the optimal loop transmission algorithms into the MIMOQFT design package

developed at the US Air Force Institute of Technology.

In the formal contract the wording is somewhat different: to undertake preliminary development

of algorithms for optimum computer-aided loop-shaping in control system design using QFT,

with no mention of incorporation into MIMOQFT.

The starting point, as defined by Professor Houpis in a meeting at AFIT in October, is

with a given nominal plant Po(jw), a given set of w-values W1 , ... , Wn, and a set of composite

boundaries Bo (jwi), ... , Bo(jwn) [4, p. 12]. The novelty and originality of OptComp is is that3 it allows the user to design the compensator G(jw) directly, rather than obtaining it indirectly

as the quotient of Lo(jw) and Po(jw) [4, p. 14].

The preliminary programs are written in Matlab, because of its power and simplicity (any

deficiencies in precision are unimportant at the development stage), and because neither of us

has convenient access to Mathematica at the moment. Once the programs have been final-

ized, translation into Mathematica and incorporation into the MIMOQFT package should be

relatively minor tasks.

I 3. MATHEMATICAL DESCRIPTION

It is assumed that the reader is familiar with at least the basic principles of QFT, as given,

for example, in [2] and [4]. The conventional process of compensator design (or loop-shaping) is
clearly described in [4, p. 14], and consists in finding the function G(jw) so that

Lo(jw) = Po(jw)G(jw), where G(jw) = rj KkGk(jw)

3 k=O

[4, p.14], equation 1.12. However, this process is indirect, in that the designer actually constructs

Lo(s), and "once a satisfactory Lo(s) is achieved then the compensator is given by G(s) =

Lo(s)/Po(s)" [4, p.14].

We here employ an original approach of determining the compensator G(s) directly, one

factor KkGk(s) at a time, until the desired order has been reached or the compensated function

meets the required specifications. The method depends on two principles:

S(a) The Nichols chart is essentially logarithmic (see Appendix 1), so nic(Lo(jw)) = nic(Po(jw))+

nic(G(jw)). This means that the the requirement that Lo(jw) lie on the boundary Bo(jw) is

equivalent to requiring nic(G(jw)) to lie on the shifted boundary nic(Bo (jw)) - nic(Po (jw))

in the Nichols chart.

(b) G(s) must be a rational function with pole excess greater than or equal to zero. By the3 Fundamental Theorem of Algebra, every polynomial with real coefficients can be factorized

!2
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as a product of linear and quadratic factors. It follows that G(s) can be written as a product

of rational functions of the six standard forms listed in the table below, and therefore

nic(G(s)) = nic(KkGk(s)),
k=O

I where each KkGk(s) is of one of the six standard forms.

1 1. constant/linear K/(s + b) (1st order lag)

2. linear/linear K(s + a)/(s +b) (1st order lead-lag)

I 3. linear/quadratic K(s + a)/(s2 + b1s + bo)

4. quadratic/quadratic K(s 2 + als + ao)/(s 2 + b1s + bo) (2nd order lead-lag)

5. constant over quadratic K/(s 2 + b1s + bo) (2nd order lag)

6. K/s (pure integrator).

3 The six standard forms of compensator.

From the two observations (a) and (b) above comes the fundamental result, on which the program

3 is based.

THEOREM. Any compensator can be achieved by iteratively finding standard compensators

KkGk(s) for k = 1, 2,..., w such that nic(KkGk(jw)) lies as close as possible to the shifted

boundary nic(Bo(jw)) - nic(Pk-l(jw)) for all given values of w. Here Pk-l(s), for k > 1,

denotes the partially compensated plant Po (s) fr=l KrGr(s).

In practice, the values wl,. .. ,w, are given, as well as the plant values PO(jwl),...., Po(jw,),

and the composite boundaries Bo(jwl),..., Bo(jwn). The first step is to find a standard com-

pensator K 1Gj(s) so that nic(K 1 G1 (jwr)) lies as close as possible to the shifted boundary

I nic(Bo(jwr)) - nic(Po(jwr)) for r = 1, ... , n. Qualitative knowledge of the shape of the Nyquist

plots of the standard compensators in the Nichols chart is therefore essential, and representative

samples are illustrated in Figure 3.1.

For minimum phase compensators, the plots all start with a phase angle of 0' when w = 0,

and curve anticlockwise in the Nichols chart as w increases. For the lead-lag compensators with3 zero pole excess (forms 2 and 4), the curves end with a phase angle of 0' as well, the difference

being that form 2 curves have phase of one sign only, whereas form 4 curves can have both3 positive and negative phase, and cross the zero phase line at an intermediate value of w. The

curves for compensators with pole excess of one (forms 1 and 3) all approach the "90' phase

line as w -+ oo. They differ only in that the phase decreases monotonically from 0' to -90° in

form 1 curves, whereas in form 3 curves the phase first increases, then decreases beyond -90',

and increases again. Finally, form 5 curves approach the -1800 phase line as w --* co, and3 form 6 plots lie on the -90' phase line, and do not require illustration.

I 3
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Figure 3.1. Nyquist plots of standard minimum phase compensators: (a) Form 1,

(b)-(c) Form 2, (d) Form 3, (e)-(h) Form 4, (1) Form 5. The circle corresponds to

w = 0 and the star to w -4 oo.

4. USER'S GUIDE TO OPTCOMP

The program runs under Matlab, even under the student edition, if the boundary matrix is

not too large. Once in Matlab, before the designer can use OptComp, the following data must

be available:
* omega - a row vector of n values of w, preferably in ascending order.

plant - a row vector of n nominal plant transfer function values (in the Nichols chart) at

s = jw, one for each value of w stored in omega.3 . bndry - an m x n matrix of composite boundary points in the Nichols chart, made up of m

boundary points for each of the n values of w. Note that, for convenience, each boundary has3 the same number of points; this can be achieved, if necessary, by interpolation, repetition, or

omission.

Three sample data sets have been provided, and any one can be used (by entering OptCompl,

OptComp2, or OptComp3) for immediate trial of the main program. All important output is

I4
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written into a diary file, which will be the default, named simply diary, unless another file

name is specified with the diary command.

After entering OptComp at the Matlab prompt, the user is reminded of the facts in the

preceding paragraphs, and given an option to exit. If he or she continues, the date and starting

time are displayed, followed by a table showing the minimum compensation required (i.e., the

* magnitude and phase of the shortest distance from the nominal plant to the boundary) at each

w-value. The information is then repeated graphically in the Nichols chart in the conventional

way, giving the Nyquist plot of the plant (in blue), with the points at the given w-values marked

by plus signs, and the boundaries drawn in white. The boundaries and plant points are each

labelled with the corresponding w-value. In order to keep the boundaries continuous, the Nichols

chart is extended horizontally, if necessary, beyond the ±180' phase angles. (The user can press

any key to continue the program whenever it pauses for inspection of graphical or other display.)

As mentioned above, the originality of OptComp is that it enables the designer to concen-

trate directly on the compensation required at each w-value. The following displays all concern

the Nyquist plot (in the Nichols chart) of the compensator that is to be found. The first diagram

shows the differences between the composite boundaries and the corresponding plant values. By

the discussion in the previous section, the Nyquist plot of an optimal compensator will therefore

lie on each of these shifted boundaries at the corresponding w-value. In particular, if each of

the shifted boundaries passes through the point (0, 0), then no compensation is necessary, and

an optimal compensator has been found.

After viewing this display, the designer is given the option to do nothing or to design a

compensator of one of the six standard forms listed in the previous section. If the design requires

a pure integrator in order to satisfy specifications on steady-state error, then the designer chooses

option 6, and is prompted to enter the value of K in dB on the diagram by clicking the left

mouse button at any point on the K dB line.

The option of using the first five standard forms is the heart of OptComp, and this is

where the designer's skill and judgement are crucial. However, since the program runs quickly

and gives clear graphical and tabular output, poor choices are immediately obvious and easy to

discard. Thus experience and confidence are rapidly acquired.

After viewing the boundaries, the designer must decide on the lowest order standard com-

pensator whose Nyquist plot seems most likely to pass close to them (in the correct order of

frequencies). He or she is then prompted to use the mouse to enter on the diagram (in order)

n points through which the Nyquist plot of the compensator should pass at the n values of w.

For optimal compensation, these points should be on the respective boundaries, and the judge-
ment comes firstly in choosing the form of compensator, and secondly in selecting realizable

points close to the boundaries. The program fits the best compensator of the desired form, and

re-displays the previous diagram with the addition of the chosen points (green circles) and the

Nyquist plot of the fitted compensator (red curve and stars). The green circles and red stars

are all labelled with the appropriate w-values. The designer can thus assess visually how good
his or her choices were, and how effective the compensation is. (A warning message appears

if the fitted compensator is not minimum phase.) More precise information is then given in

I5
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tabular form, displaying the minimum compensation required at each w-value, firstly for the

uncompensated plant and then with the new provisional compensator.

It is now easy for the designer to decide whether the new compensator is satisfactory. If

not, then he or she can either quit, or repeat the step of choosing a form of compensator and

selecting the points on the diagram through which its Nyquist plot should pass. To facilitate this

* choice at second and later attempts, the diagram also includes the red stars actually achieved

by the previous unsatisfactory attempt. In this way, the designer is guided into a better choice

the next time. With a little practice, one quickly becomes familiar with the standard Nyquist

plots, and learns what choices are realizable in practice.

If the designer is satisfied with the compensation achieved by this form of compensator,
then the gain and the coefficients of numerator and denominator are displayed and written to

to the diary. The coefficients appear as vectors, so, for example, the form 4 compensator

123(82 +4s+5)

82 +6s+10

would appear as having gain 123, numerator 1 4 5, and denominator 1 6 10. The previously

displayed table of minimum errors, before and after this compensation step, is also written to
the diary. Next, the Nyquist plot of the plant and composite boundaries, with which the process

starts, is displayed again, now also including the Nyquist plot of the compensated plant (in

green, with labelled circles at the w-values). A warning message appears if the compensated
plant is likely to have closed loop instability (i.e., if its Nyquist plot crosses the ±1800 phase

line above the 0 dB line).

The designer can then quit (if this compensator has adequately met the design specifica-

tions) or repeat the process, starting with the already compensated plant, to increase the order

of the compensator, i.e., to include an additional compensator of one of the standard forms.

5. COMMENTS AND CONCLUSIONS

We believe that the procedures in OptComp can give the designer all the transparency of
QFT and simplify the art of loop-shaping, while freeing him or her from laborious calculation.

Experienced designers, familiar with traditional loop-shaping techniques, may need a period to
adjust to the new approach of working directly with the compensator loop. It might be valuable

to try the program with students, who do not have prejudices about other methods, to see

how quickly they can acquire skill in loop-shaping using OptComp. Experimentation with the

program will also have the advantage of suggesting where it can be improved, because many of

its features have come from our own trials on sample data.
A full listing of OptComp.m appears in Appendix 3, and includes many comments to clarify

the structure of the program and its various procedures. The curve-fitting step is certainly not
the best possible, although the speedy trial-and-error method allows points giving a poor fit to

be simply discarded and replaced by better choices. At this preliminary stage, the compensator

coefficients are found by linearizing the equation in two ways, using Matlab's least squares

procedure each time, then taking the average. Use of a sophisticated non-linear optimization

routine might give closer fits.

* 6
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APPENDIX 1. GLOSSARY

compensator A rational function of s, which has real coefficients, and in which the

degree of the numerator is not greater than that of the denominator.

A transfer function is multiplied by a compensator to make it meet

predetermined specifications.

3 controller Alternative term for compensator.

m-file An executable Matlab file, with extension .m.

minimum phase A minimum phase compensator is one with no poles or zeros in the right

half-plane.

* Nichols chart Representation of complex numbers in terms of their phase angles (in

degrees) and gain magnitudes (in dB, i.e., on a logarithmic scale). In the

programs, each point in the Nichols chart is treated as a complex number

phase +j gain. Except for the scales on the axes, the Nichols chart

representation of a complex number is equal to j In (T), so multiplication

in the complex plane corresponds to addition in the Nichols chart. The

m-files nic.m and denic.m respectively transform complex numbers to

and from their Nichols chart representation, using the formulae

nic(z) = i arg(z) + 20jlogl 0 Izi and

denic(w) = exp(jj-0 Re(w) + 0.05 In 10 Im(w)).

3 Nyquist plot The set of points obtained by transforming the imaginary axis by a given

function. The Nyquist plot of f is the set {f(jw) 1 -c0 < w < w}. If

f (T) = f(z), then the plot is symmetrical, and only the portion for w > 0

is usually plotted. For our purposes, all Nyquist plots are of this form

and are in the Nichols chart, i.e. {nic(f(jw)) I w > 0}.

I order For a rational function, the sum of the degrees of numerator and de-

nominator.

pole excess For a rational function, the difference between the degrees of denomina-

tor and numerator.

I QFT Quantitative Feedback Theory.

8
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APPENDIX 2. A TYPICAL OPTCOMP SESSION

The following is the complete transcript of a session with OptComp, using the data loaded

from OptCompl. The total elapsed time is 19 minutes, most of which was spent waiting for the

I screen dumps of the graphical displays.

>> optcompl

This plant can be compensated with a linear/linear compensator.

>> optcomp

Remember omega plant bndry must be defined beforehand.

Important output is recorded in a diary.

Please enter 0 to quit or I to continue: 1

12-Apr-96

Starting time:

14 26

The next diagram gives the original plant values

and the composite boundaries at the values of omega indicated.

(Press any key.)

40 0.4
8.4

*8 -20.,

3 0 ..................... ......... .. I ..... . .. ..... .. .......... ..... •. ...................

-30.

I ,, ~~~~~~..................... i........... .. . ... ... ............. 4. 4 . ................ .. .. .. .. ... .

-t o ..................... !.............. ..... i... ............... . ..................... !.....................

-2 0 ..................... !............. . ...... i.................... Z ..................... i.....................

-58 .1 ___________ . _________

-250 -280 -150 -180 -50 8

Minimum compensation required for optimal transfer function

omega dB angle

0.4000 5.2800 -29.3600

1.0000 11.6200 -13.6800

3.0000 16.0400 37.9500

10.0000 20.1700 90.0000

40.0000 29.5700 -5.2100

Optimal compensator values must lie on each of the curves shown in

I9
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the next diagram at the values of omega indicated. (Press any key.)

40

I 35.40:
40

3 0 .. ...... ................ .. ..... ...... ...... .....
m2 s .. ........................ ......... ........... ! .... i....... 4 ; ....... ... :........... . .......... '330

......I. . ... ..... .. .m 2111'i 20

mlto ...... .. ..... ...... ..... .. ... ... .. ..

-98 -60 -40 -20 0 28 40 60 B8 100

Please enter 0 to quit,
1 for constant/linear (1st order lag)

2 for linear/linear (ist order lead-lag)
3 for linear/quadratic

4 for quadratic/quadratic (2nd order lead-lag)

5 for constant over quadratic (2nd order lag)

6 for pure integrator (K/s)

Use the mouse to choose n points near the n boundaries shown.

(Press any key.)

3 S: .. .... .. ..... ... .. .......... ........... i........... "...........3588
40

3 0 . . .. . .*.............. . .. ... . . ....... .... ............. . ...

* 400

303

2 8 ........... ... ....... .. .i ..... ........ ... ... .
1 . .. . . ... . . . ...... .. . ... ... ... ..... . .. . .. .. ...

0.40

1 5 .. ...... .. . .. ... .... ... .... .. ... ...

m ..

l4

II

U 80 -60 -40 -20 0 20 40 6 0 80 1003 10
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I Minimum compensation required for optimal transfer function

Previously With this compensator

omega dB angle dB angle

0.4000 5.2800 -29.3600 -2.8379 15.4838

* 1.0000 11.6200 -13.6800 -4.7049 4.4256

3.0000 16.0400 37.9500 -3.0035 -26.8701

10.0000 20.1700 90.0000 -0.1302 12.8050

40.0000 29.5700 -5.2100 2.6032 -3.2345

Please enter 0 if satisfied or I to replace this compensator or quit: 1

I Optimal compensator values must lie on each of the curves shown in

the next diagram at the values of omega indicated. (Press any key.)

40 r

3 5 ........... . . . . ... ! .......... ............ .. ........ ........ ' .... .. . . . . . . . . . . . .
34

440

40 3040

5 . .. . .... ... .. .. .........

10.1

0.44

-80 -60 -40 -20 a 20 40 60 80 100

Phase (degrees)

Please enter 0 to quit,

I for constant/linear (1st order lag)

2 for linear/linear (1st order lead-lag)

S3 for linear/quadratic

4 for quadratic/quadratic (2nd order lead-lag)

5 for constant over quadratic (2nd order lag)

6 for pure integrator (K/s)

2

Use the mouse to choose n points near the n boundaries shown.

I 11
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(Press any key.)

49I
3 5 ....... ............. ..................... .................. .... e ............ *......................

I 39: .. .. .. ................................

3 0. ... . .................... .. ......... .. ....... .I25 ...... ........... ......

2 9 - 6- . 49 -29 9 29 49 69 .. 199

Phase (degrees)

I Minimum compensation required for optimal transfer function

Previously With this compensator
Somega dB angle dB angle

0.4000 5.2800 -29.3600 -0.4857 9.0292

i1.0000 11.6200 -13.6800 0.8641 5.5949

3.0000 16.0400 37.9500 -3.0216 2.5373

10.0000 20.1700 90.0000 0.1979 -10.5947
I40.0000 29.5700 -5.2100 1.0117 -4.1553

Please enter 0 if satisfied or 1 to replace this coensator or quit:
P oCompensator gain

I 27.9524

Compensator ngerator

1.0000 1.0976

Compensator denominator

1.0000 9.1885

Minimum compensation required for optimal transfer function

Previously With this compensator

omega dB angle dB angle

0.4000 5.2800 -29.3600 -0.4857 9.0292

1.0000 11.6200 -13.6800 0.8641 5.5949

3.0000 16.0400 37.9500 -3.0216 2.5373
10.0000 20.1700 90.0000 0.1979 -10.5947

40.0000 29.5700 -5.2100 1.0117 -4.1553

* 12I!_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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m The next diagram gives the original and compensated plant values
and the composite boundaries at the values of omega indicated.

m (Press any key.)

m 40 _ _.4_ _ _ _ _ _ _ _

0 00.

010.

1 -33

I 5-250 -208 -150 -100 -50
Phase (degrees)I Please enter 0 to quit or 1 to design a higher order compensator: 0

Finishing time:1 4

3 14 45

m
U
m
m
I

* 13
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APPENDIX 3. FILES ON DISK

The enclosed disk (in 1.44 MB 3½ inch DOS format) contains six m-files, the main program

(optComp.m), two small function files (nic.m and denic.m) for conversion to and from the

Nichols chart, and three sample data files (OptCompl.m, OptComp2.m, and OptComp3.m), any
one of which can be run to provide input data for OptComp. A listing of the file OptComp.m

I follows.

%Program OPTCOMP.M

%This is an interactive program for designing a compensator (or controller)

% for a given plant.
%Input data (to be defined beforehand) are:

S •% omega (I by n vector of angular velocities)

Y. plant (I by n vector of nominal plant values in Nichols chart,

% •one value for each value of omega)

% bndry (m by n matrix of composite boundary points,
% m boundary points for each value of omega)

S------------------------ PREAMBLE --------------------------
disp('Remember omega plant bndry must be defined beforehand.')I disp('Important output is recorded in a diary.')
itrt = input('Please enter 0 to quit or I to continue: ');

- if itrt < 1

return

end

S--------- - INTRODUCTION----------------------------
diary on

3 disp(date)
temp = round(clock);

temp = temp([0 0 0 1 1 0]);

disp('Starting time:')
disp(temp)

3m diary off
[m,n] = size(bndry);

for 1 = 2:nI if abs(real(plant(l)) - real(plant(l-1))) > 200.0 %%This extends the

if real(plant(l)) > real(plant(l-1)) %Nichols chart, if
m plant(l) = plant(l) - 360.0; %necessary, to make

else %the plant locus

plant(l) = plant(l) + 360.0; %continuous

end %
end %

i end %/l1

14
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J = real(plant) > 180.0; WThis ensures that

temp = sum(J); .%the majority

if temp > 0.5*n %of points lie between3plant = plant - 360.0; %the -180 and +180

else %degree phase lines

m J2 = real(plant) < -180.0;

temp2 = sum(J);

if temp2 > 0.5*n %

plant = plant + 360.0; %

end

I end U

for 1 = 1:n

for k = 2:m

if abs(real(bndry(k,l)) - real(bndry(k-1,l))) > 200.0 %This extends

if real(bndry(k,l)) > real(bndry(k-1,l)) %the Nichols chart,

bndry(k,l) = bndry(k,l) - 360.0; %if necessary, to

else %make the

bndry(k,l) = bndry(k,l) + 360.0; %boundaries

end %continuous

end

end % k %

J = real(bndry(:,l)) > 180.0; W/This ensures that

temp = sum(J); %the majority

if temp > 0.5*m %of points lie between
bndry(:,l) = bndry(:,l) - 360.0; %the -180 and +1803 else %degree phase lines

J2 = real(bndry(:,l)) < -180.0;

temp2 = sum(J);

if temp2 > 0.5*m

bndry(:,l) = bndry(:,l) + 360.0; %

end

end

end 7i

-- disp('The next diagram gives the original plant values')

disp('and the composite boundaries at the values of omega indicated.')

disp('(Press any key.)')

pause

plot(real(bndry), imag(bndry),'-w' ...

real(plant),imag(plant),'-b',real(plant),imag(plant),'+b')
grid

xlabel('Phase (degrees)')
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ylabel('Gain (dB)')

for 1 = 1:n

text(real(bndry(l,l)),imag(bndry(1,l)),num2str(omega(1)))

text(real(bndry(m,l) ),imag(bndry(m,l)),num2str(omega(l)))

text(real(plant(l)),imag(plant(l)),num2str(omega(l)))

"I end

pause

plant1 = plant;

ommin = 0.5*min(omega);

ommax = 2.0*max(omega);

m omg = exp(linspace(log(ommin),log(ommax),100));

% ---------------- THE MAIN LOOP, DESIGNING ONE STANDARD COMPENSATOR3 while itrt > eps %this loop goes to the end of the program without indentation

plntmtrx = ones(m,l)*Plantl;

m diff = nic(denic(bndry - plntmtrx)); %/The difference

for 1 = 1:n %between boundaries
for k = 2:m Yand plant values,

if abs(real(diff(k,l)) - real(diff(k-1,l))) > 200.0%i.e. curves of optimal
if real(diff(k,l)) > real(diff(k-1,l)) %compensation values3 diff(k,l) = diff(k,l) - 360.0; %
else Z(Made continuous

diff(k,l) = diff(k,l) + 360.0; % by extending beyond

end % +/-180 degrees
end % if necessary.)

I end % k U

J = real(diff(:,l)) > 180.0; %%This ensures that
temp = sum(J); Ythe majority

if temp > 0.5*m %of points lie between
diff(:,l) = diff(:,l) - 360.0; %the -180 and +180

else %degree phase lines

J2 = real(diff(:,l)) < -180.0; %
temp2 = sum(J); %

if temp2 > 0.5*m %
diff(:,l) = diff(:,l) + 360.0; %

end %

end %%

I end Y1

rediff = real(diff);

imdiff = imag(diff);

temp2 = abs(denic(diff)-1.0); // This finds one

16
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temp3 = ones(m,1)*min(temp2); % point on each curve

J = abs(temp2-temp3)<eps ; % where the required

J2 = cumsum(J)<2; % compensation3 J = J.*J2; % has smallest magnitude.

error = nic(denic(diff(J))); U

diary on

disp('Minimum compensation required for optimal transfer function')

disp(' omega dB angle')

3 disp([omega ; imag(error).' ; real(error).'J.')

diary off

rpt = 2;

S.--------- INNER LOOP, ALLOWING REPEATED ATTEMPTS

while rpt>eps

disp('Optimal compensator values must lie on each of the curves shown in')

disp('the next diagram at the values of omega indicated. (Press any key.)')

pause

plot(rediff, imdiff,'-w')

grid
xlabel('Phase (degrees)')
ylabel('Gain (dB)')

3 for 1 = 1:n

text(rediff(1,l),imdiff(1,l),num2str(omega(l)))

text(rediff(m,l),imdiff(m,l),num2str(omega(l)))

I end
if rpt < 2

* hold

plot(real(Gatt),imag(Gatt),'*r')

for 1 = 1:n

text(real(Gatt(l)),imag(Gatt(l)),num2str(omega(l)))

end

U hold

end

pause

disp('Please enter 0 to quit,')

disp(' I for constant/linear (Ist order lag)')

Sdisp(' 2 for linear/linear (1st order lead-lag)')

disp(' 3 for linear/quadratic')

disp(' 4 for quadratic/quadratic (2nd order lead-lag)')

disp(' 5 for constant over quadratic (2nd order lag)')
disp(' 6 for pure integrator (K/s)')

3 nc = input('
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U
3 nc = round(nc);

if nc < eps

rpt = 0;

3 else

if nc == 6

disp('The phase is constant at -90 degrees.')

disp('Use the mouse to choose the numerator (i.e. the gain at omega = 1)')

disp('(Press any key.)')

* pause

Etemp, K] = ginput(1);

Gnum = [K];

Gden = [1 0];

else
elsdisp('Use the mouse to choose n points near the n boundaries shown.')

disp('(Press any key.)')

pause

[rGreq,iGreq] = ginput(n);

Greq = rGreq + i*iGreq;

Ss = i*(omega');

sinv = ones(n,1)./s;

3 rhs = denic(Greq);

if nc ==i

m/.This fits a constant over linear compensator '/,The curve-fitting

Pcomp = [ones(n,l) -rhs]; %,routines are fairly
Qcomp = rhs.*s; %,naive -3 P = [real(Pcomp);imag(Pcomp)]; %,linearize the problem

Q = [real(Qcomp);imag(Qcomp)]; %by cross-multiplying,

cffsl = P\Q; %then break into real

Pcomp = [sinv -sinv.*rhs]; %and imaginary parts,
Qcomp = rhs; %,and use Matlab's

P p = [real(Pcomp);imag(Pcomp)]; %least squares fit.

Q = [real(Qcomp);imag(Qcomp)]; MThen divide through

cffs2 = P\Q; %the highest power of s

cffs = 0.5*(cffsl + cffs2); %and repeat.

Gnum = [cffs(1)]; %,Finally, average the

m Gden [1 cffs(2)]; %,two answers.

end %, of case nc = 1 %%,

if nc == 2

,This fits a linear over linear compensator
Pcomp = [s ones(n,l) -rhs];

3 Qcomp = rhs.*s;

I 18
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P = [real(Pcomp);imagCPcomp)];

Q = [real(Qcomp);imag(Qcomp)];

cffsl = P\Q;3 Pcomp = [ones(n,1) sinv -sinv.*rhs];

Qcomp = rhs;

P = [real(Pcomp);imag(Pcomp)];

Q = [real(Qcomp);imag(Qcomp)];
cffs2 =P\Q;3 cffs = .5*(cffsl + cffs2);

Gnum =[cffs(l) cffs(2)];

Gden [1 cffs(3)];

end % of case nc = 2
if nc == 33 %This fits a linear over quadratic compensator

Pcomp = Es ones(n,I) -rhs.*s -rhs];3 Qcomp = rhs.*s.-2;

P = [real(Pcomp);imag(Pcomp)];

Q = [real(Qcomp);imag(Qcomp)];

Icffsl = PQ
Pcomp = [sinv sinv.-2 -sinv.*rhs -rhs.*sinv.-2];3 Qcomp = rhs;

P = Ereal(Pcomp);imag(Pcomp)];

Q= [real(Qcomp);imag(Qcomp)];I cffs2 =P\Q;
cffs = .5*(cffsl + cffs2);3 Gnum =[cffs(l) cffs(2)];

Gden =[I cffs(3) cffs(4)];

end % of case nc= 3I if nc == 4
%This fits a quadratic over quadratic compensator3 Pcomp = [s.-2 s ones~n,l) -rhs.*s -rhs];
Qcomp = rhs.*s.-2;

P = [real(Pcomp);imag(Pcomp)];

Q = [real(Qcomp);imag(Qcomp)];
cffsl = PQ3 Pcomp = [ones(n,l) sinv sinv.-2 -sinv.*rhs -rhs.*sinv.-2];

Qcomp = rhs;

P = Ereal(Pcomp);imag(Pcomp)];

Q = Ereal(Qcomp);imag(Qcomp)];
cffs2 =\Q3 cffs = .5*(cffsl + cffs2);
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Gnum = [cffs(1) cffs(2) cffs(3)];I Gden = [1 cffs(4) cffs(6)];
end % of case nc == 43 if nc == 5

Y.Tis fits a constant over quadratic compensator

Pcomp = [ones(n,1) -rhs.*s -rhs];U Qcomp =rhs.*s.-2;
P = [real(Pcomp);imag(Pcomp)];3Q = [real(Qcomp);imag(Qcomp)];

cffsl = P\Q;

Pcomp = [sinv.-2 -sinv.*rhs -rhs.*sinv.-2];

Qcomp = rhs;
P = [real(Pcomp);imag(Pcomp)];3Q = [real(Qcomp);imag(Qcomp)];

cffs2 =P\Q;

cffs 0 .5*(cffsl + cffs2);

Gnium [cffs(I)];
Gden El[ cffs(2) cffs(3)J,;3 end % of case nc == 5

end % of case nc > 03 if Gnum >= -eps

else

disp(C'*****************WARNING****************************')

disp('This compensator has a zero in the right half-plane.')

endU if Gden >= -eps

else

Iip'********WRIG**************,
disp('This compensator has a pole in the right half-plane.')3disp ( '*********ANN**************

end

Gatt = nic(polyval (Gnum, i*omega) ./polyval (Gden, i*omega));I ~ ~Gcrv = nic(polyval(Gnum, i*omg) ./polyval (Gden, i*omg));

if nc ==63 Greq =Gatt;

end

plot(rediff, imdiff, '-w' ,real(Greq) ,imag(Greq) , og' ,real(Gatt),...

imag(Gatt) , *r' ,real(Gcrv) ,imag(Gcrv), '-r')
grid3 xlabel('Phase (degrees)')
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ylabel('Gain (dB)')

for 1 = 1:n

text(rediff(l,l),imdiff(1,1),num2str(omega(1)))

3 text(rediff(m,l),imdiff(m,l),num2str(omega(l)))

text(real(Greq(1)),imag(Greq(l)),num2str(omega(l)))

text(real(Gatt(1)),imag(Gatt(1)),num2str(omega(l)))

end

pause

newdiff = diff - ones(m,l)*Gatt; %% This computes how much

temp2 = abs(denic(newdiff)-l.O); % extra compensation is

temp3 = ones(m,1)*min(temp2); % needed, if the current

J = abs(temp2-temp3)<eps ; % compensator is used.

J2 = cumsum(J)<2; % (cf diff and error above)

U J = J.*J2;
newerr = nic(denic(newdiff(J))); %%3 disp('Minimum compensation required for optimal transfer function')

disp(' Previously With this compensator')

disp(' omega dB angle dB angle')

disp([omega' imag(error) real(error) imag(newerr) real(newerr)])

rpt = input('Please enter 0 if satisfied or I to replace this compensator or

3 quit: ');

end % of else nc >= eps

end % of while rpt > eps

S------ END OF INNER LOOP ---------------------------

S- ------------------ FINAL SECTION OF THE MAIN LOOP ----------------------------

if nc > eps %This section applies only if

diary on %a standard compensator has

if abs(Gnum(1)) > eps %been designed.

3 K = Gnum(1); %It gives the coefficients,

Gnum = Gnum/K; %plots the boundaries and

disp('Compensator gain'); %compensated and uncompensated

disp(K) %plant loci,
end %and tabulates the minimum

disp('Compensator numerator') %compensation necessary, before

disp(Gnum) %and after introducing this

disp('Compensator denominator') %compensator.

disp(Gden)

disp('Minimum compensation required for optimal transfer function')

disp(' Previously With this compensator')
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disp(' omega dB angle dB angle')I disp([omega' imag(error) real~error) imag(newerr) real(newerr)])
diary off3 planti = nic(denic(plantl + Gatt));

temp =0;

for 1 =2:nI if abs(real(plantl(l)) - real(plantl(l-1))) > 200.0

if temp < 13 if imag(plantl(l)) > 0

disp('The closed loop transfer function may be unstable.')

temp =13 end
end

if real(plantl(l)) > real(plantl(l-1))

plantl(l) = plantl(l) - 360.0;
else3 plantl(l) = plantl(l) + 360.0;

end

end

end %.1

J = real(plantl) > 180.0; /.Whis ensures thatItemp =sum(J; %the majority
if temp > 0.5*n %~of points lie between3 planti = planti - 360.0; %~the -180 and +180

else %degree phase lines

J2 = real(plantl) < -180.0;%Itemp2 = ui)%
if temp2 > 0.5*n %t3plantl = planti + 360.0;%
end BA

end H.?U disp('The next diagram gives the original and compensated plant values')
disp('and the composite boundaries at the values of omega indicated.')3 disp('(Press any key.)')

pause

plot (real (bndry), imag(bndry),'-w',...Ielpat)ia~lnl,-lra~lnlmgpat)
real(plantl),imag(plantl),'-g',real(plantl),imag(plantl),ý+'og).

3 grid
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xlabel('Phase (degrees)')

ylabel('Gain (dB)')

for 1 = 1:n3 text(real(bndry(l,l)),imag(bndry(l,l)),num2str(omega(1)))

text(real(bndry(m,l)),imag(bndry(m,l)),num2str(omega(1)))

* text(real(plantl(1)),imag(plantl(1)),num2str(omega(1)))

text(real(plant(1)),imag(plant(i)),num2str(omega(1)))

end

* pause

end %of if nc > eps

I ----- END OF FINAL SECTION OF THE MAIN LOOP -----------

disp('Please enter 0 to quit or I to design a higher order compensator:')

3 itrt = input(' 1);

end % of while itrt > eps

I ----- END OF THE MAIN LOOP .................

diary on

temp = round(clock);

temp = temp([O 0 0 1 1 0]);

disp('Finishing time: ')

disp(temp)

diary off

I
I
I
I
I
I
I
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